Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.944
Filtrar
1.
Mol Ther Nucleic Acids ; 35(2): 102165, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571746

RESUMO

Duchenne muscular dystrophy (DMD) is the most prevalent herediatry disease in men, characterized by dystrophin deficiency, progressive muscle wasting, cardiac insufficiency, and premature mortality, with no effective therapeutic options. Here, we investigated whether adenine base editing can correct pathological nonsense point mutations leading to premature stop codons in the dystrophin gene. We identified 27 causative nonsense mutations in our DMD patient cohort. Treatment with adenine base editor (ABE) could restore dystrophin expression by direct A-to-G editing of pathological nonsense mutations in cardiomyocytes generated from DMD patient-derived induced pluripotent stem cells. We also generated two humanized mouse models of DMD expressing mutation-bearing exons 23 or 30 of human dystrophin gene. Intramuscular administration of ABE, driven by ubiquitous or muscle-specific promoters could correct these nonsense mutations in vivo, albeit with higher efficiency in exon 30, restoring dystrophin expression in skeletal fibers of humanized DMD mice. Moreover, a single systemic delivery of ABE with human single guide RNA (sgRNA) could induce body-wide dystrophin expression and improve muscle function in rotarod tests of humanized DMD mice. These findings demonstrate that ABE with human sgRNAs can confer therapeutic alleviation of DMD in mice, providing a basis for development of adenine base editing therapies in monogenic diseases.

2.
Heliyon ; 10(7): e28364, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596137

RESUMO

Objective: This study examined the mechanism through which plumbagin induces ferroptosis of colon cancer cells. Methods: CCK-8 assay was performed to examine the viability of colon cancer cells (SW480 and HCT116 cells) after they were treated with 0-, 5-, 10-, 15- and 20-µmol/L plumbagin. Colony formation assay and Transwell assay were used to examine the effects of 15-µmol/L plumbagin on the proliferation, invasive ability. The ferroptosis of SW480 and HCT116 cells and the expression of p-p53, p53 and SLC7A11 were analysed. The effects of blocking necrosis, apoptosis and ferroptosis on the anti-cancer effects of plumbagin were examined. After p53 was silenced, the effects of plumbagin on proliferation, invasion, ferroptosis and SLC7A11 expression were assessed. A tumour-bearing nude mouse model was used to examine the effects of p53 silencing and/or plumbagin on tumour growth, ferroptosis and SLC7A11 expression. Results: Plumbagin inhibited the proliferation of SW480 and HCT116 cells and their invasive and colony-forming abilities. It increased Fe2+ levels but significantly decreased GSH and GPX4 levels. When ferroptosis was inhibited, the effects of plumbagin on colon cancer cells were significantly alleviated. Plumbagin promoted the expression and phosphorylation of p53 and inhibited the mRNA and protein levels of SLC7A11. Silencing of p53 counteracted the effects of plumbagin on the ferroptosis and biological behaviour of SW480 and HCT116 cells. In mouse models of colon cancer, silencing of p53 attenuated the tumour-suppressing effects of plumbagin as well as its inhibitory effects on the protein level of SLC7A11 and restored the expression of GSH and GPX4. Conclusion: Plumbagin promotes ferroptosis and inhibits cell proliferation and invasion by decreasing the protein expression of SLC7A11 through p53.

3.
Brain Pathol ; : e13261, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602336

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, pathologically characterized by TDP-43 aggregates. Recent evidence has been indicated that phosphorylated TDP-43 (pTDP-43) is present not only in motor neurons but also in muscle tissues. However, it is unclear whether testing pTDP-43 aggregation in muscle tissue would assist in the diagnosis of ALS. We propose three key questions: (i) Is aggregation of pTDP-43 detectable in routine biopsied muscles? (ii) Can detection of pTDP-43 aggregation discriminate between ALS and non-ALS patients? (iii) Can pTDP-43 aggregation be observed in the early stages of ALS? We conducted a diagnostic study comprising 2 groups: an ALS group in which 18 cases underwent muscle biopsy screened from a registered ALS cohort consisting of 802 patients and a non-ALS control group, in which we randomly selected 54 muscle samples from a biospecimen bank of 684 patients. Among the 18 ALS patients, 3 patients carried pathological GGGGCC repeats in the C9ORF72 gene, 2 patients carried SOD1 mutations, and 7 patients were at an early stage with only one body region clinically affected. The pTDP-43 accumulation could be detected in routine biopsied muscles, including biceps brachii, deltoid, tibialis anterior, and quadriceps. Abnormal aggregation of pTDP-43 was present in 94.4% of ALS patients (17/18) compared to 29.6% of non-ALS controls (16/54; p < 0.001). The pTDP-43 aggregates were mainly close to the sarcolemma. Using a semi-quantified pTDP-43 aggregates score, we applied a cut-off value of 3 as a diagnostic biomarker, resulting in a sensitivity of 94.4% and a specificity of 83.3%. Moreover, we observed that accumulation of pTDP-43 occurred in muscle tissues prior to clinical symptoms and electromyographic lesions. Our study provides proof-of-concept for the detection of pTDP-43 accumulation via routine muscle biopsy which may serve as a novel biomarker for diagnosis of ALS.

4.
Plant Cell Environ ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629794

RESUMO

Increasing the tolerance of crops to water deficit is crucial for the improvement of crop production in water-restricted regions. Here, a wheat peroxidase gene (TaPrx109-B1) belonging to the class III peroxidase gene family was identified and its function in water deficit tolerance was revealed. We demonstrated that overexpression of TaPrx109-B1 reduced leaf H2O2 level and stomatal density, increased leaf relative water content, water use efficiency, and tolerance to water deficit. The expression of TaEPF1 and TaEPF2, two key negative regulators of stomatal development, were significantly upregulated in TaPrx109-B1 overexpression lines. Furthermore, exogenous H2O2 downregulated the expression of TaEPF1 and TaEPF2 and increased stomatal density, while exogenous application of diphenyleneiodonium chloride, a potent NADPH oxidase inhibitor that repressed the synthesis of H2O2, upregulated the expression of TaEPF1 and TaEPF2, decreased stomatal density, and enhanced wheat tolerance to water deficit. These findings suggest that TaPrx109-B1 influences leaf stomatal density by modulation of H2O2 level, and consequently affecting the expression of TaEPF1 and TaEPF2. The results of the field trial showed that overexpressing TaPrx109-B1 increased grain number per spike, which reduced the yield loss caused by water deficiency. Therefore, TaPrx109-B1 has great potential in breeding wheat varieties with improved water deficit tolerance.

5.
J Pharm Pharmacol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625054

RESUMO

OBJECTIVES: The study aimed to investigate the protective effects of dexmedetomidine (DEX) on renal injury caused by acute stress in rats and explore the protective pathways of DEX on rat kidneys in terms of oxidative stress. METHODS: An acute restraint stress model was utilized, where rats were restrained for 3 hours after a 15-minute swim. Biochemical tests and histopathological sections were conducted to evaluate renal function, along with the measurement of oxidative stress and related pathway proteins. KEY FINDINGS: The open-field experiments validated the successful establishment of the acute stress model. Acute stress-induced renal injury led to increased NADPH oxidase 4 (NOX4) protein expression and decreased expression levels of nuclear transcription factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1). Following DEX treatment, there was a significant reduction in renal NOX4 expression. The DEX-treated group exhibited normalized renal biochemical results and less damage observed in pathological sections compared to the acute stress group. CONCLUSIONS: The findings suggest that DEX treatment during acute stress can impact the NOX4/Nrf2/HO-1/NQO1 signaling pathway and inhibit oxidative stress, thereby preventing acute stress-induced kidney injury. Additionally, DEX shows promise for clinical applications in stress syndromes.

6.
ACS Nano ; 18(15): 10625-10641, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563322

RESUMO

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.


Assuntos
Dendrímeros , Nanopartículas , Osteoartrite , Humanos , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Dendrímeros/uso terapêutico , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Fósforo/uso terapêutico
7.
Inorg Chem ; 63(16): 7241-7254, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38581386

RESUMO

The elimination of toluene is an obligatory target with increasing VOC emission in recent years. This study successfully prepared a single-atom Ir catalyst (Ir1/CeO2) by a simple incipient wetness impregnation method, confirmed by in situ CO DRIFTS and AC-HAADF-STEM. Compared to the cluster Ir catalyst (Ir/CeO2-C), Ir1/CeO2 exhibited excellent catalytic performance, stability, and water resistance for the oxidation of toluene. By Raman, H2-TPR, O2-TPD, and XPS experiments, abundant oxygen defects and a unique Ir3+-Ov-Ce3+ structure were formed for the Ir1/CeO2 sample because it had a lower oxygen vacancy formation energy. Furthermore, the DFT results revealed that the Ir1/CeO2 sample had a lower ring-opening energy barrier and adsorption energy of the ring-opening products, which was the rate-determining step for the oxidation of toluene. This work provides instructive insights into the construction of Ir/CeO2 catalysts for the highly efficient removal of VOCs.

8.
Chemosphere ; 357: 142068, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636921

RESUMO

Due to limited land availability in municipal wastewater treatment plants, integrated fixed-film activated sludge (IFAS) technology offers significant advantages in improving nitrogen removal performance and treatment capacity. In this study, two systems, IFAS and Anaerobic-Anoxic-Oxic Activated sludge process (AAO), were compared by adjusting parameters such as hydraulic retention time (HRT), nitrifying solution recycle ratio, sludge recycle ratio, and dissolved oxygen (DO). The objective was to investigate pollutant removal capacity and differences in microbial community composition between the two systems. The study showed that, at an HRT of 12 h, the IFAS system exhibited an average increase of 5.76%, 8.85%, and 12.79% in COD, NH4+-N, and TN removal efficiency respectively, compared to the AAO system at an HRT of 16 h. The TP concentration in the IFAS system reached 0.82 mg/L without the use of additives. The IFAS system demonstrated superior effluent results under lower operating conditions of HRT, nitrification solution recycle ratio, and DO. The 16S rDNA analysis revealed higher abundance of denitrification-related associated flora, including Proteobacteria, Bacteroidetes, and Planctomycetota, in the IFAS system compared to the AAO system. Similarities were observed between microorganisms attached to the media and activated sludge in the anaerobic, anoxic, and oxic tanks. q-PCR analysis indicated that the incorporation of filler material in the IFAS system resulted in similar abundance of nitrifying bacteria genes on the biofilm as in the oxic tank. Additionally, denitrifying genes showed higher levels due to aeration scouring and the presence of alternating aerobic-anaerobic environments on the biofilm surface, enhancing nitrogen removal efficiency.

9.
BMC Med Genomics ; 17(1): 86, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627727

RESUMO

BACKGROUND: The interplay between exosomes and the tumor microenvironment (TME) remains unclear. We investigated the influence of exosomes on the TME in hepatocellular carcinoma (HCC), focusing on their mRNA expression profile. METHODS: mRNA expression profiles of exosomes were obtained from exoRBase. RNA sequencing data from HCC patients' tumors were acquired from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). An exosome mRNA-related risk score model of prognostic value was established. The patients in the two databases were divided into high- and low-risk groups based on the median risk score value, and used to validate one another. Functional enrichment analysis was performed based on a differential gene prognosis model (DGPM). CIBERSORT was used to assess the abundance of immune cells in the TME. The correlation between the expression levels of immune checkpoint-related genes and DGPM was analyzed alongside the prediction value to drug sensitivity. RESULTS: A prognostic exosome mRNA-related 4-gene signature (DYNC1H1, PRKDC, CCDC88A, and ADAMTS5) was constructed and validated. A prognostic nomogram had prognostic ability for HCC. The genes for this model are involved in extracellular matrix, extracellular matrix (ECM)-receptor interaction, and the PI3K-Akt signaling pathway. Expression of genes here had a positive correlation with immune cell infiltration in the TME. CONCLUSIONS: Our study results demonstrate that an exosome mRNA-related risk model can be established in HCC, highlighting the functional significance of the molecules in prognosis and risk stratification.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Exossomos/genética , RNA Mensageiro/genética , Microambiente Tumoral , Fosfatidilinositol 3-Quinases , Neoplasias Hepáticas/genética , Prognóstico , Fatores de Risco , Proteínas dos Microfilamentos , Proteínas de Transporte Vesicular
10.
Genome Med ; 16(1): 57, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627827

RESUMO

BACKGROUND: Carbapenem-resistant Escherichia coli (CREC) has been considered as WHO priority pathogens, causing a great public health concern globally. While CREC from patients has been thoroughly investigated, the prevalence and underlying risks of CREC in healthy populations have been overlooked. Systematic research on the prevalence of CREC in healthy individuals was conducted here. We aimed to characterize CREC collected from healthy populations in China between 2020 and 2022 and to compare the genomes of CREC isolates isolated from healthy individuals and clinical patients. METHODS: We present a nationwide investigation of CREC isolates among healthy populations in China, employing robust molecular and genomic analyses. Antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatics were utilized to analyze a cohort of CREC isolates (n = 113) obtained from fecal samples of 5 064 healthy individuals. Representative plasmids were extracted for third-generation nanopore sequencing. We previously collected 113 non-duplicate CREC isolates (59 in 2018, 54 in 2020) collected from ICU patients in 15 provinces and municipalities in China, and these clinical isolates were used to compare with the isolates in this study. Furthermore, we employ comparative genomics approaches to elucidate molecular variations and potential correlations between clinical and non-clinical CREC isolates. RESULTS: A total of 147 CREC isolates were identified from 5 064 samples collected across 11 provinces in China. These isolates were classified into 64 known sequence types (STs), but no dominant STs were observed. In total, seven carbapenemase genes were detected with blaNDM-5 (n = 116) being the most prevalent one. Genetic environments and plasmid backbones of blaNDM were conserved in CREC isolated from healthy individuals. Furthermore, we compared clinical and healthy human-originated CRECs, revealing noteworthy distinctions in 23 resistance genes, including blaNDM-1, blaNDM-5, and blaKPC (χ2 test, p < 0.05). Clinical isolates contained more virulence factors associated with iron uptake, adhesion, and invasion than those obtained from healthy individuals. Notably, CREC isolates generally found healthy people are detected in hospitalized patients. CONCLUSIONS: Our findings underscore the significance of healthy populations-derived CRECs as a crucial reservoir of antibiotic resistance genes (ARGs). This highlights the need for ongoing monitoring of CREC isolates in healthy populations to accurately assess the potential risks posed by clinical CREC isolates.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Saúde Pública , Humanos , beta-Lactamases/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Genômica , Carbapenêmicos/farmacologia
11.
ACS Appl Mater Interfaces ; 16(15): 18534-18550, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574189

RESUMO

The metastasis and recurrence of cancer are related to immunosuppression and hypoxia in the tumor microenvironment. Activating immune activity and improving the hypoxic environment face essential challenges. This paper reports on a multifunctional nanomaterial, HSCCMBC, that induces immunogenic cell death through powerful photodynamic therapy/chemodynamic therapy synergistic antitumor effects. The tumor microenvironment changed from the immunosuppressive type to immune type, activated the immune activity of the system, decomposed hydrogen peroxide to generate oxygen based on Fenton-like reaction, and effectively increased the level of intracellular O2 with the assistance of 3-bromopyruvate, a cell respiratory inhibitor. The structure and composition of HSCCMBC were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared spectroscopy, etc. Oxygen probe RDPP was used to investigate the oxygen level inside and outside the cell, and hydroxyl radical probe tetramethylbenzidine was used to investigate the Fenton-like reaction ability. The immunofluorescence method investigated the expression of various immune markers and hypoxia-inducing factors in vitro and in vivo after treatment. In vitro and in vivo experiments indicate that HSCCMBC is an excellent antitumor agent and is expected to be a candidate drug for antitumor immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Dióxido de Silício/farmacologia , Cobre/química , Carbono/farmacologia , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Oxigênio/química , Hipóxia , Linhagem Celular Tumoral , Peróxido de Hidrogênio/química , Microambiente Tumoral , Nanopartículas/química
12.
Oncologist ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642091

RESUMO

INTRODUCTION: Fruquintinib is approved in China for patients with metastatic colorectal cancer (CRC) who progressed after 2 lines of chemotherapy. This postmarketing study was conducted to evaluate the safety of fruquintinib in the Chinese population, including previously treated patients with advanced CRC and other solid tumors. METHODS: Patients in the first cycle of fruquintinib or expected to start fruquintinib within a week were enrolled. Fruquintinib was administrated according to the label or per physicians' discretion. Patient characteristics and safety information were collected at baseline, 1 month, and 6 months after consent (or 30 days after the last dose). RESULTS: Overall, 3005 patients enrolled between April 24, 2019 and September 27, 2022. All enrolled patients received at least one dose of fruquintinib. Most patients had metastases at baseline. The median age was 60 years. More than half (64.0%) of the patients started fruquintinib at 5 mg, and the median treatment exposure was 2.7 months. Nearly one-third (32.5%) of patients with CRC received fruquintinib with concomitant antineoplastic agents. Treatment-emergent adverse events (TEAEs) leading to dose modification were reported in 626 (20.8%) patients, and 469 (15.6%) patients experienced TEAEs leading to treatment discontinuation. The most common grade ≥ 3 TEAEs were hypertension (6.6%), palmar-plantar erythrodysesthesia syndrome (2.2%), and platelet count decreased (1.0%). Combination therapy did not lead to excessive toxicities. CONCLUSIONS: The safety profile of fruquintinib in the real world was generally consistent with that in clinical studies, and the incidence of TEAEs was numerically lower than known VEGF/VEGFR inhibitor-related AEs. Fruquintinib exhibited manageable safety and tolerability in Chinese patients in the real-world setting.

13.
Phys Rev Lett ; 132(13): 136001, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613301

RESUMO

The polar Kerr effect and the closely related anomalous charge Hall effect are among the most distinguishing signatures of the superconducting state in Sr_{2}RuO_{4}, as well as in several other compounds. These effects are often thought to be derived from chiral superconducting pairing, and different mechanisms have been invoked for the explanation. However, the intrinsic mechanisms proposed previously often involve unrealistically strong interband Cooper pairing. We show in this Letter that, even without interband pairing, nonunitary superconducting states can support the intrinsic anomalous charge Hall effect, thanks to the quantum geometric properties of the Bloch electrons. The key here is to have a normal-state spin Hall effect, for which a nonzero spin-orbit coupling is essential. A finite charge Hall effect then naturally arises at the onset of a spin-polarized nonunitary superconducting pairing. It depends on both the spin polarization and the normal-state electron Berry curvature, the latter of which is the imaginary part of the quantum geometric tensor of the Bloch states. Applying our results to the weakly paired Sr_{2}RuO_{4} we conclude that, if the reported Kerr effect is of intrinsic origin, the superconducting state is most likely nonunitary and has odd parity. Our theory may be generalized to other superconductors that exhibit the polar Kerr effect.

15.
Exp Ther Med ; 27(6): 239, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38633355

RESUMO

The present study aimed to investigate the effect and mechanism of Pulsatilla compounds on lung adenocarcinoma. The representative drug chosen was the compound 23-HBA. GeneCards, Swiss target prediction, DisGeNET and TCMSP were used to screen out related genes, and MTT and flow cytometry assays were used to verify the inhibitory effect of Pulsatilla compounds on the proliferation of lung adenocarcinoma cells. Subsequently, the optimal target, peroxisome proliferator-activated receptor (PPAR)-γ, was selected using bioinformatics analysis, and its properties of low expression in lung adenocarcinoma cells and its role as a tumor suppressor gene were verified by western blot assay. The pathways related to immunity and inflammation, vascular function, cell proliferation, differentiation, development and apoptosis with the highest degree of enrichment and the mechanisms were explored through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Finally, the clinical prognosis in terms of the survival rate of patients in whom the drug is acting on the target was analyzed using the GEPIA database. The results indicated that Pulsatilla compounds can inhibit the proliferation of lung adenocarcinoma cells by blocking the cell cycle at the G1 phase. Subsequently, the related PPAR-γ gene was verified as a tumor suppressor gene. Further analysis demonstrated that this finding was related to the PPAR signaling pathway and mitochondrial reactive oxygen species (ROS) production. Finally, the clinical prognosis was found to be improved, as the survival rate of patients was increased. In conclusion, Pulsatilla compounds were indicated to inhibit the viability and proliferation of lung adenocarcinoma H1299 cells, and the mechanism of action was related to PPAR-γ, the PPAR signaling pathway and mitochondrial ROS. The present study provides novel insight to further explore the treatment of lung adenocarcinoma.

16.
Brain Circ ; 10(1): 67-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655441

RESUMO

PURPOSE: Through three neurocritical care unit (NCCU) surveys in China, we tried to understand the development status of neurocritical care and clarify its future development. METHODS: Using a cross-sectional survey method and self-report questionnaires, the number and quality of NCCUs were investigated through three steps: administering the questionnaire, sorting the survey data, and analyzing the survey data. RESULTS: At the second and third surveys, the number of NCCUs (76/112/206) increased by 47% and 84%, respectively. The NCCUs were located in tertiary grade A hospitals or teaching hospitals (65/100/181) in most provinces (24/28/29). The numbers of full-time doctors (359/668/1337) and full-time nurses (904/1623/207) in the NCCUs increased, but the doctor-bed ratio and nurse-bed ratio were still insufficient (0.4:1 and 1.3:1). CONCLUSION: In the past 20 years, the growth rate of NCCUs in China has accelerated, while the allocation of medical staff has been insufficient. Although most NCCU hospital bed facilities and instruments and equipment tend to be adequate, there are obvious defects in some aspects of NCCUs.

17.
Nat Prod Res ; : 1-18, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586940

RESUMO

Herein, we isolated five natural alkaloids, iso-corydine (iso-CORY), corydine (CORY), sanguinarine (SAN), chelerythrine (CHE) and magnoflorine (MAG), from traditional medicinal herb Dicranostigma leptopodum (Maxim.) Fedde (whole herb) and elucidated their structures. Then we synthesised G5. NHAc-PBA as targeting dendrimer platform to encapsulate the alkaloids into G5. NHAc-PBA-alkaloid complexes, which demonstrated alkaloid-dependent positive zeta potential and hydrodynamic particle size. G5. NHAc-PBA-alkaloid complexes demonstrated obvious breast cancer MCF-7 cell targeting effect. Among the G5. NHAc-PBA-alkaloid complexes, G5.NHAc-PBA-CHE (IC50=13.66 µM) demonstrated the highest MCF-7 cell inhibition capability and G5.NHAc-PBA-MAG (IC50=24.63 µM) had equivalent inhibitory effects on cell proliferation that comparable to the level of free MAG (IC50=23.74 µM), which made them the potential breast cancer targeting formulation for chemotherapeutic application. This work successfully demonstrated a pharmaceutical research model of 'natural bioactive product isolation-drug formulation preparation-breast cancer cell targeting inhibition'.

18.
RSC Adv ; 14(16): 11007-11016, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38586448

RESUMO

This study systematically investigates the mechanism of NOx emissions during the sintering process, with a focus on the utilization of biochar as an auxiliary fuel to replace a portion of the coke traditionally used in iron ore sintering. The research involved the simulation of sintering raw material ratios using iron ore, biochar, and coke powder. Substitution levels of biochar for coke were set at 0%, 20%, 40%, 50%, 60%, 80%, and 100%. NOx emissions during the sintering process were monitored using a sintering flue gas detection system. Simultaneously, a comprehensive analysis of the sintered ore was conducted with the aim of producing samples that meet sintered ore requirements while reducing NOx emissions. Experimental results revealed that when biomass charcoal substitution for coke reached 50%, the lowest NO emissions were observed during the sintering process, with a reduction of over 90% in accumulated NO emissions in the exhaust gas. In this process, due to the participation of biochar, CO2 emissions were reduced by approximately 50% compared to traditional sintering processes. The study also analyzed the physicochemical properties of the sintered ore using methods such as XRD, Raman, FTIR, and Vickers hardness testing. The results indicated that the hardness fluctuated within the range of 610 to 710N for sintered products with different levels of biochar substitution, and there were minimal changes in Fe element content and crystal phase transformations.

19.
Environ Sci Technol ; 58(16): 7066-7077, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597811

RESUMO

Reactive oxygen species (ROS) are ubiquitous in the natural environment and play a pivotal role in biogeochemical processes. However, the spatiotemporal distribution and production mechanisms of ROS in riparian soil remain unknown. Herein, we performed uninterrupted monitoring to investigate the variation of ROS at different soil sites of the Weihe River riparian zone throughout the year. Fluorescence imaging and quantitative analysis clearly showed the production and spatiotemporal variation of ROS in riparian soils. The concentration of superoxide (O2•-) was 300% higher in summer and autumn compared to that in other seasons, while the highest concentrations of 539.7 and 20.12 µmol kg-1 were observed in winter for hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), respectively. Spatially, ROS production in riparian soils gradually decreased along with the stream. The results of the structural equation and random forest model indicated that meteorological conditions and soil physicochemical properties were primary drivers mediating the seasonal and spatial variations in ROS production, respectively. The generated •OH significantly induced the abiotic mineralization of organic carbon, contributing to 17.5-26.4% of CO2 efflux. The obtained information highlighted riparian zones as pervasive yet previously underestimated hotspots for ROS production, which may have non-negligible implications for carbon turnover and other elemental cycles in riparian soils.


Assuntos
Carbono , Espécies Reativas de Oxigênio , Estações do Ano , Solo , Solo/química , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo
20.
Ann Hematol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538975

RESUMO

Multiple myeloma (MM) is a common malignant hematologic neoplasm, and the involvement of epigenetic modifications in its development and drug resistance has received widespread attention. Ferroptosis, a new ferroptosis-dependent programmed death mode, is closely associated with the development of MM. The novel methyltransferase inhibitor DCG066 has higher cell activity, but its mechanism of action in MM has not been clarified. Here, we found that DCG066 (5µM) inhibited the proliferation and induced ferroptosis in MM cells; the intracellular levels of ROS, iron, and MDA were significantly elevated, and the level of GSH was reduced after the treatment of DCG066; The protein expression levels of SLC7A11, GPX4, Nrf2 and HO-1 were significantly reduced, and these phenomena could be reversed by ferroptosis inhibitor Ferrostatin-1 (Fer-1) and Nrf2 activator Tert-butyl hydroquinone (TBHQ). Meanwhile, the protein expression levels of Keap1 was increased, and heat shock proteins (HSP70, HSP90 and HSPB1) were reduced after DCG066 treatment. In conclusion, this study confirmed that DCG066 inhibits MM proliferation and induces ferroptosis via the Nrf2/HO-1 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...